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Abstract — This work presents a comparative analysis
using the mAP metric of the YOLOv7 and SSD
algorithms applied to the field of computer vision.
The comparison is performed through the detection of
potholes on highways and roads. In works defended
by other authors, both techniques are considered for
applications in computer vision. In this study, both
models achieved promising results in pothole detection;
however, it is observed that the YOLOv7 model reached
an mAP metric of 80%, while the SSD model obtained
an mAP of 73%. Thus, the results indicate that YOLOv7
is more efficient and accurate in pothole detection in this
specific context.
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1 INTRODUCTION

Traffic accidents on roads and highways occur on a
daily basis. Some of these accidents are caused by
potholes or surface irregularities that arise from pavement
deterioration or natural meteorological events, such as heavy
rainfall. When vehicles encounter these potholes, they may
cause significant inconvenience to drivers, including vehicle
damage and/or serious accidents such as collisions and
pedestrian run-overs, potentially resulting in fatal outcomes
[1].

According to the open database of the Brazilian Federal
Highway Police (PRF) [2], in 2021 a total of 3,974 accidents
caused by potholes were recorded on highways (Fig. 1). Of
these, 15.10% resulted in fatalities and 72.45% led to injured
victims. In 2022, a 40% increase in pothole-related accidents
was observed compared to 2021, of which 17.11% resulted
in fatalities and 71.73% resulted in injured victims.

An analysis of accidents recorded up to the end of February
2023 shows that 1,312 incidents were caused by potholes on
highways, of which 21.42% resulted in fatalities and 70.50%
in injured victims. These data clearly indicate the urgent
need for the adoption of mitigation measures to address this
issue and enhance the safety of both drivers and pedestrians
[2].

One effective strategy to reduce the number of accidents is
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Fig. 1. Accident caused by potholes on public roads [3]

the implementation of intelligent autonomous systems for
object detection. These systems are capable of addressing
complex problems, such as pothole recognition, without
relying on human intervention, by employing information
input peripherals such as image and video acquisition
systems. This approach is commonly referred to in the
literature as computer vision or computer-assisted vision
systems [4].

Fig. 2. Example of Computer Vision Application [5]

Computer vision is a subfield of artificial intelligence that
aims to model and replicate human vision in computers
through the use of software and hardware, as illustrated in
Fig. 2. These systems extract meaningful information from
images, videos, and other visual inputs in order to support
decision-making processes or automate specific tasks [4].

Several object detection algorithms have been proposed in
the literature, including the Single Shot MultiBox Detector
(SSD) [6] and You Only Look Once (YOLO) [7], which
belong to the category of single-stage detectors. These
approaches are discussed in detail in previous studies [8]-
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[13].

In order to properly evaluate the performance of object
detection algorithms, it is essential to select an appropriate
evaluation metric. The Mean Average Precision (mAP)
metric combines, in a weighted manner, three relevant
metrics: Precision, Recall, and Intersection over Union
(IoU). These metrics are widely recognized in the field
of machine learning, making mAP a suitable choice for
evaluating object detection algorithms [14].

2 OBJECT DETECTION ALGORITHMS

Object detection is considered a classical task in the field
of computer vision, whose main objective is to classify and
localize one or more objects in a static image (photograph)
or a dynamic scene (video) [15]. Unlike image classification,
which assigns a single class label to the entire image, object
detection focuses on identifying specific objects by enclosing
them within bounding boxes (Fig. 3).
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Fig. 3. Difference between image classification and object detection

Although techniques proposed more than 50 years ago
exist to address computer vision problems—such as object
detection based on edge detection (Fig. 4), as proposed
by [16]—these approaches are not fully suitable for
handling the challenges encountered in real-world scenarios.
Consequently, over the years, new algorithms have been
proposed with the aim of addressing this task in a more
efficient and robust manner.
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Fig. 4. Using boundaries for segmentation and recognition [17]
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With the continuous evolution of hardware platforms and
the rapid growth in the volume, velocity, and variety of
generated data, the use of artificial neural network algorithms
has become feasible. These algorithms play a crucial
role in modern artificial intelligence-based object detection
techniques [18], among which SSD and YOLO stand out.

2.1 SINGLE SHOT MULTIBOX DETECTOR (SSD)

The SSD algorithm, introduced by [6], is widely recognized
for its ability to simultaneously perform object localization
and classification tasks. The term “Single Shot” refers
to the model’s capability to execute both tasks in a single
forward pass through the network. In addition, the
term “MultiBox” alludes to the bounding box regression
technique incorporated into SSD, which rapidly proposes
bounding box coordinates regardless of the object class [19].
This model achieves a mAP score of 74.3% on the Pascal
VOC2007 dataset [6].

Object detection in the SSD model is divided into two
main stages: feature map extraction and the application of
convolutional filters for object detection [19].

In the first stage of the SSD algorithm, fixed-size bounding
boxes—also referred to as default boxes—are generated. The
dimensions of these bounding boxes are precomputed by
considering the sizes and locations of reference bounding
boxes corresponding to each class in the dataset [20].
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Fig. 5. Default boxes of the input image [21]

Fig. 5 illustrates the operation of default bounding boxes on
an input image. Fig. 5a shows the reference bounding boxes,
while Figs. 5b and Sc present the feature maps that describe
the original image partitioned into cells.
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Fig. 6. Standard VGG16 network architecture [22]
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The initial layer of the neural network in the SSD algorithm
employs a pretrained backbone network, such as VGG
(Fig. 6), ResNet, or MobileNet. These networks are
commonly used in classification tasks and have already been
trained to extract representative feature maps [20].

The VGG architecture includes fully connected layers at
the end of its structure. However, when addressing
object detection problems, these fully connected layers
are removed, and VGGI16 is used exclusively for feature
extraction. This feature extraction network is commonly
referred to as the base network [23].

The MultiBoxLoss class (Fig. 7) 1is responsible for
implementing the SSD loss function in detail. To ensure
fidelity and accuracy, the loss function described in the
original SSD paper was adopted as a reference.

— i p—

Fig. 7. Application of the MultiBox approach

The output of the base network is provided as input to
six additional convolutional layers, where the feature maps
progressively decrease in size, resulting in reduced spatial
resolution. This process is performed to enable object
detection at multiple scales [23], as illustrated in Fig. 8.
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Fig. 8. SSD algorithm architecture

At each feature map, default detection boxes are defined,
for which the network computes the probability of an object
being present as well as variations in position, width, and
height [6]. To perform class detection and bounding box
regression, the algorithm applies convolutions on the feature
maps using filters of size 3 x 3 x M x N, where M denotes the
depth of the layer and N represents the number of applied
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filters. The convolutional layers use identical stride and
padding values, ensuring that the output maintains the same
width and height as the input feature map [23].

The number of filters applied to detect K classes on a feature
map containing C default detection boxes is given by (K +
4)-C. This means that K + 4 filters are used—one for each
class and four additional filters to represent bounding box
offsets—for each of the C boxes in the feature map [23].

All detections obtained across all cells of the convolutional
layers are subsequently processed by a Non-Maximum
Suppression (NMS) layer, whose objective is to eliminate
overlapping detections and retain only a single bounding box
per object present in the image. The NMS method employs
the Intersection over Union (IoU) criterion, calculated as the
ratio between the intersection area and the union area of
two geometric regions. This criterion is used to determine
whether a detection should be suppressed or retained during
the filtering process [23].

The SSD loss function consists of two components:
classification loss and localization loss. The classification
loss measures the discrepancy between the predicted class
probabilities and the ground truth object classes, computed
using the cross-entropy loss function. In contrast, the
localization loss evaluates the difference between the
predicted bounding boxes and the ground truth bounding
boxes. This loss component is computed using the Smooth
LI Loss function [6].

2.2 YOU ONLY LOOK ONCE (YOLO)

YOLO is a family of single-stage, real-time object detection
algorithms that employ convolutional neural networks
(CNNs) for object detection. The objective of the network
is to perform object detection by formulating the task as a
regression problem. In this way, a CNN is able to directly
predict bounding boxes and class confidence scores [12].
The architecture selected for use in this work is YOLOV7.
At the time this study was conducted, this architecture
represents the state of the art in object detection for both
static images and dynamic scenes [7].

According to [7], YOLOvV7 is currently the fastest and most
accurate real-time object detector. The algorithm achieved a
significant performance improvement over previous YOLO-
family models by substantially enhancing detection accuracy
while maintaining high inference speed.

Improvements in speed and accuracy are achieved
through the implementation of significant architectural
refinements. Among these refinements are the adoption
of the Extended Efficient Layer Aggregation (E-ELAN)
technique, dimensional alignment for concatenation-
based models, and reparameterization strategies. These
modifications are designed to achieve an optimal balance
between detection efficiency and accuracy [24].

The YOLOV7 algorithm consists of four main modules: the
input module, the backbone network, the head network, and
the detection (prediction) network, as illustrated in Fig. 9
[24].
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Fig. 9. YOLOV7 network architecture, adapted from [24]

The input module is responsible for ensuring that input
images are uniformly resized to 640 x 640 pixels and comply
with the input requirements of the main network. The
preprocessing stage of YOLOv7 employs data augmentation
techniques such as mosaic and hybrid augmentation and
is based on the adaptive anchor box calculation method
introduced in YOLOVS [24].

The backbone network is composed of three main
components: CBS, E-ELAN, and MP1. The CBS block
consists of convolution, batch normalization, and SiLU
activation functions. E-ELAN preserves the original ELAN
design architecture and enhances the network’s learning
capability by guiding different computational blocks of
feature groups to learn more diverse representations while
maintaining the original gradient flow path [24].

The MP1 block is composed of CBS and MaxPool operations
and is divided into two paths: an upper path and a lower
path. In the upper path, MaxPool is used to reduce the spatial
dimensions (height and width) of the feature maps by half,
while a CBS block with 128 output channels reduces the
number of channels by half [24].

In the lower path, a CBS block with a 1 x 1 kernel and stride
is used to reduce the number of channels by half, followed by
another CBS block with a 3 x 3 kernel and a 2 x 2 stride to
reduce the spatial resolution by half. The features extracted
from both paths are then combined using a concatenation
(Cat) operation [24].

MaxPool aims to extract the maximum pixel value
information within small local regions, whereas CBS extracts
complete value information from local regions, thereby
improving the network’s feature extraction capability [24].
The head network is structured using a Feature Pyramid
Network (FPN) architecture combined with the PANet
design. This network is composed of multiple blocks of
convolution, batch normalization, and SiLU activation (CBS
blocks), along with the incorporation of a Spatial Pyramid
Pooling and Convolutional Spatial Pyramid (SPPESPE)
structure, the E-ELAN network, and the MaxPool-2 (MP2)
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block [24].

The SPPESPE structure enhances the receptive field
of the network by embedding a Convolutional Spatial
Pyramid (CSP) within the Spatial Pyramid Pooling (SPP)
framework, along with a wide residual connection to
facilitate optimization and feature extraction [24].

The ELAN-H layer fuses multiple feature layers based on
E-ELAN, further improving feature extraction performance.
The MP2 block has a structure similar to MP1, with a slight
modification in the number of output channels [24].

The prediction network employs a structure known as REP
to adjust the number of feature channels produced by the
head network. A 1 x 1 convolution is applied to generate
confidence scores, class predictions, and bounding box
coordinates. The REP structure is inspired by RepVGG [25]
and adopts a residual design to facilitate the training process.
During the inference stage, this residual structure can
be simplified into a single convolutional layer, thereby
reducing network complexity without compromising
detection performance [24]. After bounding box prediction,
the YOLO algorithm applies the same post-processing
technique used in SSD, namely non-maximum suppression
(NMS).

In the post-processing stage, YOLO employs the NMS
technique to eliminate overlapping and duplicate detections,
ensuring that only the most confident bounding box is
retained for each detected object in the image.

2.3 EVALUATION METRICS

To evaluate object detection models, evaluation metrics are
employed by considering the ground-truth object locations
in an image and the predictions generated by the model,
enabling the assessment of model accuracy. One of the
most widely used metrics for this purpose is the Mean
Average Precision (mAP). The mAP metric combines three
fundamental measures: precision, recall, and Intersection
over Union (IoU) [26].

2.3.1 Precision

The precision metric is defined as the ratio between true
positives (7p) and the total number of predictions classified
as positive by the model, which include true positives and
false positives (Fp). Therefore, precision indicates the
proportion of relevant results among all positive predictions
[12].

Tp
Tp+Fp

Precision =

(D
2.3.2 Recall

The recall metric is defined as the ratio between Tp and the
sum of Tp and false negatives (Fy). Thus, recall represents
the ability of a model to identify all relevant objects in a
dataset, i.e., the proportion of total relevant instances that are
correctly detected by the algorithm [12].
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Tp
Tp+ Fyn

Recall = 2)

2.3.3 Intersection over Union

The IoU metric is widely used to evaluate the quality of
object detection models. Images in the dataset are previously
annotated to specify the ground-truth object locations. Model
performance is then assessed by computing the intersection
between the predicted bounding box and the ground-truth
bounding box divided by the union of both bounding box
areas, as illustrated in Fig. 10 [12].

_Intersection Area

loU Union Area

Fig. 10. IoU metric formulation [12]

The IoU metric produces values ranging from O to 1, where
higher values indicate better model performance [12].

2.3.4 Mean Average Precision

The mAP metric corresponds to the mean of the Average
Precision (AP) values computed for each object class in
an object detection problem. It is a widely adopted metric
for evaluating the overall performance of object detection
systems. The mAP value ranges from 0 to 1 (or 0-
100%), with values closer to 1 indicating superior detection
performance [27].

The Average Precision (AP) is computed as the area under
the Precision—Recall curve. To compute AP, a condition
must be established to determine whether a prediction is
considered correct. This condition is defined by an IoU
threshold (threshold), whereby a detection is regarded as
correct if its IoU value is equal to or greater than the specified
threshold [27].

For example, consider a predefined IoU threshold of 0.5
for classifying a prediction. If the IoU value is greater
than or equal to 0.5, the object detection is classified as a
true positive (TP), which occurs when the detector correctly
predicts both the object class and its location. Conversely, if
the IoU value is lower than 0.5, the detection is considered
incorrect and is classified as a false positive (FP). A false
positive represents a detection error and occurs when the
classifier incorrectly predicts an object.

A true negative (TN) occurs when the detector correctly
predicts that no object of interest is present in a given region,
and indeed no object exists. On the other hand, a false
negative (FN), also considered a detection error, occurs when
the detector predicts that no object is present in a region
where an object actually exists [28].

Mello et al.

3 APPLICATION

This section presents the methodology adopted for the
development of this work, which is divided into three main
parts: Dataset Acquisition, Training of the SSD Algorithm,
and Training of the YOLO Algorithm. The complete
implementation of the comparative analysis is publicly
available on GitHub!.

3.1 DATASET ACQUISITION

To perform the comparative analysis between the SSD and
YOLO models, a real-world dataset was collected from the
Kaggle data science competition platform?.

The use of a real dataset is essential to properly evaluate the
performance and effectiveness of the SSD and YOLO models
under practical application conditions. The selected Kaggle
dataset presents relevant characteristics for comparative
analysis, providing a diverse set of samples for both training
and testing.

The dataset consists of a collection of 665 images
containing potholes on roads and highways, with each image
accompanied by its corresponding annotated bounding
boxes. The annotations follow the widely adopted Pascal
VOC format in the computer vision community, ensuring a
standardized and easily interpretable structure. The dataset
is already divided into training and test subsets.

In total, 80% of the images were allocated to the training
set, allowing the models used in this work to be trained
effectively. The remaining 20% were reserved for the test set,
which was used to evaluate model performance and assess
their generalization capability on previously unseen data.
This dataset partitioning strategy is a common practice in
machine learning and computer vision, ensuring an objective
evaluation of model performance. From these evaluations,
reliable metrics such as mAP and IoU can be obtained, which
are essential for assessing the effectiveness and reliability of
the models in pothole detection on roads and highways.

3.2 TRAINING OF THE SSD ALGORITHM

To implement the SSD algorithm, the original SSD paper
was used as the primary reference, along with the official
repository provided by Wei Liu and hosted on GitHub®.

The algorithm implementation followed the object-oriented
programming paradigm, using classes as the fundamental
structural elements. All implemented files are available in
the repository referenced in !, allowing full access to and
inspection of the source code.

After implementing the SSD algorithm, model training was
initiated using the pothole dataset described in Table 1.
During training, data augmentation techniques were not
applied to generate synthetic samples. However, transfer
learning was adopted by leveraging the pretrained weights

'https://github.com/luizfmello01/tcc_ssd_yolo

*https://www.kaggle.com/datasets/chitholian/annotated-
potholes-dataset

Shttps://github.com/weiliug9/caffe/tree/ssd

Revista Brasileira de Estudos Cientificos REBEC | Balnedrio Camborit (SC), v. 1, n. 1, Janeiro 2026 5/8
DOI: 10.5281/zenodo.18294543


https://github.com/luizfmello01/tcc_ssd_yolo
https://www.kaggle.com/datasets/chitholian/annotated-potholes-dataset
https://www.kaggle.com/datasets/chitholian/annotated-potholes-dataset
https://github.com/weiliu89/caffe/tree/ssd
https://doi.org/10.5281/zenodo.18294543

Tab. 1 SSD algorithm training

Starting training ..........

Updating learning rate to 0.0001

Epoch [0] | batch_idx [0] loc_loss [2.65] | cls_loss [7.44] | total_loss [10.09]
Epoch [0] | batch_idx [1] loc_loss [2.86] | cls_loss [7.09] | total_loss [9.96]
Epoch [0] | batch_idx [2] loc_loss [2.92] | cls_loss [6.83] | total_loss [9.75]
Epoch [0] | batch_idx [3] loc_loss [2.93] | cls_loss [6.53] | total_loss [9.47]
Epoch [0] | batch_idx [4] loc_loss [2.92] | cls_loss [6.29] | total_loss [9.21]
Epoch [0] | batch_idx [5] loc_loss [2.88] | cls_loss [6.04] | total_loss [8.92]
Epoch [0] | batch_idx [6] loc_loss [2.90] | cls_loss [5.81] | total_loss [8.71]
Epoch [0] | batch_idx [7] loc_loss [2.87] | cls_loss [5.61] | total_loss [8.48]
Epoch [0] | batch_idx [8] loc_loss [2.87] | cls_loss [5.41] | total_loss [8.28]
Epoch [0] | batch_idx [9] loc_loss [2.87] | cls_loss [5.23] | total_loss [8.10]
Epoch [0] | batch_idx [10] | loc_loss [2.87] | cls_loss [5.07] | total_loss [7.94]

of the VGG-16 network, which was originally trained on the
ImageNet dataset.

The trained model was subsequently evaluated through
inference on new images that were not previously seen
during the training phase.

3.3 TRAINING OF THE YOLO ALGORITHM

The first step in initiating the YOLOvV7 training process
consisted of cloning the official YOLOV7 repository
available on GitHub*. This process creates an exact copy of
all files and directories contained in the repository, enabling
access to the resources required for training.

The official YOLOvV7 repository was originally trained using
the MS COCO dataset, whose annotation format differs
from that of the dataset used in this work. To address this
incompatibility, two dedicated notebooks were developed to
convert the dataset from the Pascal VOC format to the format
supported by YOLOV7.

During the adaptation process to the YOLO format, it
was necessary to copy the ImageSets, Annotations, and
JPEGImages directories from the standard Pascal VOC
structure into a new directory. This new directory
follows a simplified structure containing only the folders
train/images, train/annotations, test/images, and
test/annotations. This simplification facilitates the
transformation of the data into the YOLO-compatible format.
After executing the aforementioned notebook, the resulting
images were organized into the train/images and
test/images directories, while the object annotations
were grouped into the train/annotations and
test/annotations directories. This directory structure
properly separates images and annotations according to the
training and testing partitions.

In the subsequent step, the object annotations were converted
from the Pascal VOC standard format into the YOLO
format. To perform this transformation on each XML
file individually, a separate notebook was developed. This
notebook is comprehensive and includes all the steps
required for correct conversion, such as reading XML
files, extracting relevant information (e.g., annotated object
coordinates), and generating the corresponding YOLO-
format text files.

During the training of the YOLO algorithm, data
augmentation techniques were employed to generate

“https://github.com/WongKinYiu/yolov7
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synthetic samples, and transfer learning was adopted by
leveraging pretrained weights obtained from the MS COCO
dataset. Table 2 presents the initial training process of the
YOLOV7 algorithm using the pothole dataset.

Tab. 2 YOLOV7 algorithm training

Epoch Gpu_Mem Box Obj Cls Total Labels ImgSize mAP@.5
0299  9.93G 0.089 0.008264 0 0.097 24 320 0.002
17299 9.97G 0.082  0.008746 0 0.091 34 320 0.008
2/299  9.97G 0.079 0.008431 0 0.087 9 320 0.009
3/299  9.97G 0.074  0.009733 0 0.084 32 320 0.007
4/299  9.93G 0.071  0.009912 0 0.081 45 320 0.001

4 RESULTS

To evaluate the models, a training process consisting of a
total of 300 epochs was conducted. In addition, 133 images
were considered for evaluation in both models. It is worth
noting that the dataset used in this study includes exclusively
a single class, namely potholes.

Tab. 3 Model evaluation results

Algorithm Epochs Total Images mAP

SSD 300 133 0.736
YOLOv7 300 133 0.806

Table 3 presents the evaluation results of the models,
including the number of training epochs, the total number of
images used during the evaluation phase, and the evaluation
metric known as mAP, which was obtained during the
analysis. After performing the evaluation, the results indicate
that the YOLOV7 algorithm outperformed SSD in terms of
the mAP metric.

4.1 POTHOLE DETECTION IN TEST SET IMAGES

In Figs. 11a and 11b, the YOLO algorithm identified a total
of six potholes on the roadway. However, in Fig. 11b, the
model incorrectly classified an object as a pothole when, in
fact, it corresponds to a minor surface irregularity. Despite
this misclassification, it is important to emphasize that,
overall, the algorithm demonstrated satisfactory performance
in pothole detection.

On the other hand, Figs. 12a and 12b show that the
SSD algorithm exhibited inferior performance in pothole
detection when compared to YOLOv7. Specifically, SSD
identified a total of three potholes in the analyzed images,
failing to detect two potholes present on the roadways.
Therefore, it is evident that both models were successful
in detecting potholes in images not previously seen during
the training process, highlighting the models’ ability to
effectively learn the underlying pothole detection patterns.

4.2 POTHOLE DETECTION IN NEW IMAGES
CAPTURED BY THE AUTHOR USING A
MOBILE PHONE

To assess model generalization capability, four new images
(Figs. 13a, 13b, 14a, and 14b) were captured in the region of
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(b) Pothole detection in img-464 using YOLOV7

Fig. 11. Analysis of test set images using YOLOvV7

Balnedrio Camborid. The results show that both algorithms
successfully detected potholes on the roads, as illustrated in
Figs. 13 and 14.

5 CONCLUSIONS

Based on the obtained results, it can be concluded that both
models performed effectively in the detection of potholes on
roadways. The YOLOv7 model, in particular, demonstrated
superior performance compared to the SSD model, as
evidenced by the mAP metric, achieving an mAP of 80%
in contrast to the 73% obtained by SSD. This performance
gap can be attributed to YOLOV7’s greater effectiveness in
handling variations such as scale, illumination, occlusion,
and other challenging factors. These aspects are commonly
encountered in object detection tasks within dynamic,
complex, and uncontrolled environments, such as road and
highway scenarios.

Nevertheless, it is important to note that both models
present potential for further improvement in terms of
accuracy. The use of a larger and more diverse training
dataset could enable the models to learn from a wider
variety of pothole examples, including those with less
common characteristics. In addition, the application of
advanced data augmentation techniques—such as geometric
transformations and illumination variations, which were not
explored in this study—could enrich the training dataset
without the need for manual image collection.

Another relevant aspect concerns the optimization of model
parameters. Fine-tuning parameters such as learning rate,
batch size, and number of training epochs may have a
significant impact on model performance. Furthermore,
experiments involving different network architectures and
attention mechanisms may lead to additional improvements
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Fig. 12. Analysis of test set images using the Single Shot Detector

Pothole

(a) Image analysis using the Single Shot
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Fig. 13. Pothole detection in new images captured by the author using a
mobile phone

in pothole detection accuracy.

In summary, the current results are promising, yet there
remains room for enhancement. Future research focused
on expanding the dataset, evaluating data augmentation
strategies, and optimizing model parameters has the potential
to further improve the performance of pothole detection
models applied to road and highway environments.
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